Dispersion characteristics for plasma resonances of Maxwellian and Kappa distribution plasmas and their comparisons to the IMAGE/RPI observations

نویسندگان

  • Adolfo F. Viñas
  • Richard L. Mace
  • Robert F. Benson
چکیده

[1] The Radio Plasma Imager (RPI) on the IMAGE satellite stimulates short-range plasma wave echoes and plasma emissions, known as plasma resonances, which are then displayed on plasmagrams. These resonances are used to provide measurements of the local electron density ne and magnetic field strength jBj. The RPI-stimulated resonances are the magnetospheric analog of plasma resonances stimulated by topside ionospheric sounders. These resonances are stimulated at the harmonic of the electron cyclotron frequency fce, the electron plasma frequency fpe, and the upper-hybrid frequency fuh (where fuh 2 = fpe 2 + fce ). They are also observed between the harmonics of fce (i.e., nfce) both above and below fpe, where they are known as Qn and Dn resonances, respectively. Calculations of the Qn resonances in the ionospheric environment, based upon a thermal Maxwellian plasma model, provided confidence in the resonance identification between the observations and the estimated values within the experimental errors. However, there is often an apparent difference between these resonances in the magnetospheric environment and those predicted by calculations based on a Maxwellian plasma model. For example, the Qns are often (and perhaps consistently) observed at frequencies slightly lower than expected for a Maxwellian plasma. We present a new set of resonance calculations using the dispersion characteristics of these resonances based upon a nonthermal kappa distribution. We then compare these calculations and those based on a traditional Maxwellian thermal plasma model with the IMAGE/RPI observations. The calculations based on the kappa distribution model appear to resolve the aforementioned frequency discrepancy. In addition, the results also provide insights into the nature of the electron distribution function in the magnetosphere.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Modeling of Non-equilibrium Plasma Discharge of Hydrogenated Silicon Nitride (SiH4/NH3/H2)

In this work, we model a radiofrequency discharge of hydrogenated silicon nitride in a capacitive coupled plasma reactor using Maxwellian and non-Maxwellian electron energy distribution function. The purpose is to investigate whether there is a real advantage and a significant contribution using non-Maxwellian electron energy distribution function rather than Maxwellian one for determining the ...

متن کامل

Misestimation of temperature when applying Maxwellian distributions to space plasmas described by kappa distributions

This paper presents the misestimation of temperature when observations from a kappa distributed plasma are analyzed as a Maxwellian. One common method to calculate the space plasma parameters is by fitting the observed distributions using known analytical forms. More often, the distribution function is included in a forward model of the instrument’s response, which is used to reproduce the obse...

متن کامل

Firehose instability in space plasmas with bi-kappa distributions

Context. The existence of suprathermal charged particle populations in space plasma is frequently confirmed by interplanetary missions. In general, the velocity distribution functions are anisotropic, field aligned (gyrotropic) with two temperatures, parallel (T‖) and perpendicular (T⊥) to the ambient magnetic field B0. Aims. Here, the dispersion properties of the firehose instability, which re...

متن کامل

A Simple Method for Modeling Collision Processes in Plasmas with a Kappa Energy Distribution

We demonstrate that a nonthermal distribution of particles described by a kappa distribution can be accurately approximated by a weighted sum of Maxwell–Boltzmann distributions. We apply this method to modeling collision processes in kappa-distribution plasmas, with a particular focus on atomic processes important for solar physics. The relevant collision process rate coefficients are generated...

متن کامل

Modeling of Thomson Scattering Spectra in High-Z, Laser Produced Plasmas

Theoretical calculations of a Thomson scattering cross section and dynamical form factors are presented for high-Z laser produced inhomogeneous plasmas. Relevance of these results to astrophysical plasmas is pointed out. Comparisons with recent experimental observations are discussed with emphasis on the effects of plasma inhomogeneity, ion-ion collisions and non-Maxwellian distribution functio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005